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ABSTRACT 
 
Assessing and maintaining track geometry within acceptable limits are key components of railroad 
infrastructure maintenance operations. Track geometry conditions have a significant influence on 
rider comfort and safety. To maintain the ride quality and safety of the track, maintenance activities 
pertaining to track geometry, such as tamping, are performed. Tamping enhances the track geometry 
quality but fails to return the track geometry to an as-good-as-new condition. Majority of studies 
have evaluated tamping recovery using deterministic techniques, which assume that tamping recovery 
is dependent on the track geometry quality prior to tamping. However, they fail to capture the 
uncertainty of the recovery values. Probabilistic approaches are increasingly being used to account 
for the uncertainty but fail to model the underlying dependence between the variables, which may 
exhibit nonlinear dependences such as tail or asymmetric dependence. To accurately model the tamping 
recovery phenomenon, this research employs the copula models in combining arbitrary marginal 
distributions to form a joint multivariate distribution with the underlying dependence. Copula models 
are used to estimate the tamping recovery of track geometry parameters such as surface (longitudinal 
level), alignment, cross level, gage, and warp. 
 
Keywords: Copulas, track geometry, tamping, railroad maintenance, correlation analysis, 
concordance measures 
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INTRODUCTION 
 
Railroad tracks deteriorate with age and usage (tonnage) with decreasing performance over 
time, which may eventually lead to failure. Railroad infra- structure components often have 
a service life of more than 30 years justifying the need for an optimal long-term 
maintenance strategy. Due to budget restrictions and high logistical cost constraints, rail- 
roads plan most track geometry maintenance activities up to a year in advance (Quiroga 
et al. 2012, Soleimanmeigouni et al. 2016, and Caetano and Teixeira 2016). 
 
Track geometry is a key feature of railroad construction (Esveld 2001, Khouy 2013). The 
condition of track geometry is important for various reasons. Riding comfort and safety 
(risk of derailment) are dependent on the condition of track geometry (Quiroga et al. 2012). 
A well-maintained track geometry not only guarantees ride comfort and safety but also 
increase the life of the track and track availability for train operation. Thus, maintenance 
of track geometry is imperative in relation to cost reduction and availability of tracks 
(Famurewa et al. 2016). Furthermore, deterioration of many other track components is 
closely linked to the condition of track geometry (Khouy 2013 Jovanovic 2004).  
 
Maintenance activities of track geometry are regularly conducted in order to maintain the 
track geometry condition to achieve good riding quality and safety (Miwa 2002). These 
activities such as tamping, stone- blowing, and ballast undercutting are conducted to 
control track deterioration and recover damaged track sections to operable conditions. 
They enhance the quality of track geometry but fail to return the track geometry to a 
good-as-new condition (Soleimanmeigouni et al. 2016). If prognostic (predictive) 
tamping strategies are to be employed, there is the need to know beforehand the 
effectiveness of tamping, which can be evaluated by the amount of improvement or 
recovery in the condition of track geometry (Famurewa et al. 2013). 
 
Majority of studies have evaluated tamping recovery using deterministic techniques such 
as linear regression models and have assumed that tamping effectiveness is mainly 
dependent on the quality of track geometry prior to tamping. However, in most i cases there 
exists a high degree of uncertainty due to high variation in the restoration values after tamping 
even for similar track geometry condition. This variation is even higher at the end of the life-
cycle than at the beginning. For this reason, probabilistic or stochastic techniques have been 
employed to cater for this variation by assuming the recovery value after tamping is a random 
variable with a given probability distribution (Soleimanmeigouni et al. 2016). 
 
Furthermore, most tamping recovery models do not take into account the underlying 
dependence between the tamping recovery values and the influencing factors such as track 
geometry condition before tamping. In this paper, a copula-based approach is employed, 
which takes into consideration the various forms of dependences by allowing for the 
separate modeling of the arbitrary marginal distributions and the dependence structure that 
are subsequently combined to form a joint distribution with the underlying dependence. 
 
TRACK GEOMETRY MAINTENANCE AND RECOVERY 
 
Track geometry 
 
Track geometry may be defined as the three-dimensional geometry of track layouts and 
related measurements used in design, construction, and maintenance of railroad tracks. To 
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identify defects prior to their development beyond acceptable standards, track geometry 
condition is regularly evaluated during track inspection (Caetano and Teixeira 2016, 
Caetano and Teixeira 2015). Track geometry is influenced by climatic conditions, traffic 
conditions such as loads and speed, construction materials and techniques, as well as 
maintenance history (Audley and Andrews 2013). 
 
Quality of track geometry 
 
The quality of track geometry can be defined as the “assessment of deviations (excursions) 
from the mean or designed geometrical characteristics of specified parameters in the 
vertical and lateral planes which give rise to safety concerns or have a correlation with ride 
quality” (Khouy 2013). The track geometry condition can be assessed by the standard 
deviation (SD) over a specified length, mean value or extreme (peak) values of isolated 
defects of the track geometric par- ammeters (Khouy 2013, Vale et al. 2012). The main 
geometric parameters used to evaluate the quality and irregularity of track geometry 
include surface (longitudinal level or vertical alignment), alignment (horizontal 
alignment), gage (gauge), cross level (cant), and warp (twist). Surface, cross level, and 
warp are vertical geometric parameters, whereas alignment and gage are horizontal geo- 
metric parameters. 
 
The deterioration of track geometry is often evaluated by the irregularities or defects of 
these parameters: surface defects, horizontal alignment defects, cross-level defects, gage 
deviations, and warp (track twist) deviations. Infrastructure managers often com- bine 
these defects into a track quality index (TQI) as a representative measure of the different 
track geometric parameters, and the index is quantified as a function of the SDs of each 
irregularity and allowable train speed. However, the SD of short wavelength of the surface 
defect is still regarded as the decisive criterion for maintenance decisions Caetano and 
Teixeira 2013, Andrade and Teixeira 2012). 
 
Surface and alignment can be defined as the track geometry of railroad track centerline 
projected onto longitudinal vertical and horizontal planes, respectively. The surface 
parameter is considered to be the most representative of the track quality (Audley and 
Andrews 2013). It is the main factor for determining the expenses of track maintenance 
and often triggers the need for maintenance intervention (Khouy 2013). It is the geometric 
parameter, which significantly affects rolling stock and the track dynamics in the vertical 
direction (Vale et al. 2012). Surface irregularities can be defined as the vertical geometric 
deviation measured in inches from the rail top on  the running surface to the ideal mean 
line of the longitudinal profile. Shortwave surface defects have been found to recover very 
well during tamping. Experimental studies have verified a linear dependence between SD 
of surface irregularities and accumulated tonnage. Despite surface being the most 
prominent parameter, disregarding the other parameters during the evaluation of track 
geometry condition may result in erroneous assessment leading to ineffective maintenance 
planning (Caetano and Teixeira 2016, Soleimanmeigouni et al. 2016, Andrade and 
Teixeira 2012). 
 
Gage is the distance between two rail heads at right angles to the rails in a plane 5/8" below 
the top of the rail head. This differs in Europe where the gage is measured 14 mm (0.55") 
below the running surface. Gage variation along with alignment has been found to play 
important roles in the operational quality of the railroad track substructure. Warp (twist) is 
a measure of the cross-level variation. Warp can also   be defined as the algebraic difference 
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between two cross levels taken at any two points within a specified chord length and is 
usually expressed as the gradient between the points. Cross level on the other hand is the 
difference in elevation between the adjacent running rails computed from the angle 
between the running surface and a horizontal reference plane. Warp is a crucial factor that 
is considered during derailment risk assessment and thus must not be ignored during the 
evaluation of track geometry (Soleimanmeigouni et al. 2016). 
 
There is the need for regular inspection or monitoring of the condition or quality of track 
geometry using track geometry inspection cars. Track geometry inspection cars assess 
track irregularities using both an inertia measurement system and an optical system. The 
vertical and lateral deviation of the track is computed for consecutive 1-foot measurements 
by means of recorded vehicle accelerations measured by an accelerometer. The sampling 
interval differs in Europe where track parameters are usually measured at 25 cm (0.82 ft) 
intervals. 
 
Tamping 
 
Tamping is the main maintenance activity employed to restore the track geometry 
condition and is one of the most essential yet costly track maintenance activities (Caetano 
and Teixeira 2016, Wen et al. 2016). Tamping rectifies the track geometry deviations such 
as incorrect surface profile (vertical deviation) and incorrect alignment (lateral deviation) 
by rearranging and compacting the ballast (Audley and Andrews 2013, Khouy 2016). 
 
Tamping can be executed either mechanically or manually (Audley and Andrews 2013) 
and involves heavy machinery and substantial labor resources (Caetano and Teixeira 
2016). Tamping operations can be performed as either preventive or corrective 
maintenance (Khouy et al. 2012). Corrective tamping is performed to rectify isolated 
defects, whereas preventive tamping can be performed at stations, turnouts (switches) and 
crossings, and open lines. These two kinds of tamping procedures are planned in different 
ways (Wen et al. 2015). Tamping can also be classified into complete and partial tamping 
procedures. Complete tamping intervention is executed on the entire length of track 
section, whereas partial tamping is carried out on a fraction of the segment. Complete 
tamping and partial tamping have different effects on the track geometry condition. Thus, 
separate analysis of these kinds of interventions can result in a drastic decrease in the 
variation of recovery values of track quality after tamping (Soleimanmeigouni et al. 
2016a, SoleimanmeigouniI et al. 2016b). 
 
Tamping results in a significant decrease in the track geometry irregularity 
measurements and alters the track deterioration (Soleimanmeigouni et al. 2016). 
Tamping also has a significant influence on the effective capacity of a railway network 
as a result of its distinct needs such as track possession duration, track quality demand, 
scheduling constraints, and heavy equipment utilization. Thus, it is important to 
optimize the scheduling of this maintenance task (Famurewa et al. 2013, Gustavsson 
2015). However, the execution of tamping more often is not optimally planned. 
Tamping are at times performed at very low (SD) levels and thus are not influenced by 
travel comfort (Khouy et al. 2012). Hasty tamping may result in shorter life cycle and 
track design capacity may not be attained given the ineffective tamping procedures 
(Famurewa et al. 2013, Quiroga et al. 2012). 
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Tamping recovery 
 
The recovery in track geometry condition may be dependent on several factors including 
track quality prior to tamping, frequency of previous tamping operations (maintenance 
history), subsurface (ballast) conditions, tamping procedure, age of track components, 
operational speeds, and human factors (Famurewa et al. 2013, Audley and Andrews 2013). 
The dominant factor that influences tamping efficiency or tamping recovery is the track 
condition just before tamping. The recovery of the SD of the surface profile depends on 
the track geometric quality just prior to maintenance according to the Office for Research 
and Experiments of the UIC. The higher the SD of the surface profile, the higher the 
variability of the track recovery (Vale et al. 2013). 
 
Tamping recovery is dependent on previous tamping procedures since tamping has a 
damaging effect on the ballast (the tamping machine arms crush the ballast particles), 
which is the major factor of track stability. This leads to the resultant quality in the current 
tamping being lower than the resultant quality of the preceding tamping (Wen et al. 2016). 
Tamping recovery also reduces with increasing number of accumulated tamping 
interventions due to the ballast deterioration with traffic loads as well as the ballast damage 
due to successive tamping procedures (Caetano and Teixeira 2016). Tamping efficiency 
decreases with increase in ballast service life leading to a reduction in the durability of 
track quality and increased frequency of tamping to maintain track condition at acceptable 
standards (Zhao et al. 2006). 
 
There are two main approaches of modeling restoration (or recovery) after tamping, 
namely deterministic or probabilistic (stochastic) approaches. The choice of methodology 
to employ should be chosen based on the degree of uncertainty in the recovery values after 
tamping. In deterministic techniques, tamping recovery is directly evaluated in relation 
to the influencing factors such as track quality prior to tamping, the operational speeds, 
and maintenance history. The model parameters are treated as unknown constants with 
uncertainty incorporated using confidence intervals. Majority of studies have 
evaluated tamping recovery using deterministic techniques such as linear regression 
models and have assumed that tamping effectiveness is mainly dependent on the quality of 
track geometry prior to tamping. Linear regression models are highly popular due to their 
simplicity and have been employed in the development of track geometry maintenance 
models and optimization scheduling models (Soleimanmeigouni et al. 2016a, 
Soleimanmeigouni 2016b) 
 
Miwa (2002) and Oyama and Miwa (2009) applied linear regression restoration models 
to predict the maintenance effectiveness of tamping with the amount of recovery 
dependent on the track condition prior to tamping. Their restoration models were 
combined with an exponential smoothing degradation model, which were subsequently 
used in developing an optimization track maintenance scheduling model. Andrade and 
Teixeira (2012) employed linear tamping restoration models as well as a linear track 
deterioration model, which were subsequently used in the development of a bi-objective 
model to optimize planned maintenance and renewal activities related to track geometry. 
Vale et al. (2012) employed linear tamping restoration model as well as a linear track 
deterioration model, which were subsequently used in the development of a mathematical 
maintenance model (formulated as integer (mixed 0-1 linear programming), which 
optimizes tamping operations in ballasted track as preventive maintenance. 
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Meier-Hirmer et al. (2009) developed a maintenance strategy model comprising three sub-
models namely an intervention efficiency model, a gamma process track deterioration model, 
and a maintenance cost model. This model was used to establish the long-term costs of 
various maintenance strategies and optimize these costs based on various parameters such 
as intervention threshold or inspection interval. The authors observed that the maintenance 
efficiency or recovery appeared to be normally distributed and employed linear regression 
to characterize the intervention benefit, which was assumed to be dependent on the 
deterioration prior to intervention. Famurewa et al. (2013) developed an empirical 
regression model for recovery after tamping intervention based on previous (longitudinal 
level) data on examined routes. The empirical recovery model was combined with an 
exponential track degradation model to optimize the tamping intervention schedule 
through the minimization of the total intervention cost particularly the track possession 
cost. 
 
Wen et al.2016) evaluated the tamping recovery based on both the track condition before 
tamping and the frequency/number of previously performed tamping procedures. This 
restoration model was subsequently employed in a mixed integer linear programming 
(MILP) model formulated for the scheduling optimization of preventive condition-based 
tamping through the minimization of net present costs considering several factors. Caetano 
and Teixeira3 evaluated the effect of the age of track sections (segments) operations on 
tamping recovery by comparing renewed sections (ages of approximately 10 years) and 
nonrenewed sections (approximately 20 years). Despite the variation in the deterioration 
rates of track geometry due to loss of tamping effectiveness, the average number of 
maintenance tamping procedures was found to be greater in older track sections. This is 
similar to the findings by Audley and Andrews (2013). 
 
Khouy et al. (2012) evaluated the effectiveness of tamping by examining the track 
condition (longitudinal level) before and after tamping, which was subsequently 
categorized using a tamping intervention graph into bad, good, or excellent in relation to 
the level of improvement in track condition after maintenance. A large proportion of the 
sections were found to be either in the good or bad category.  Due to the high variation in 
the recovery observed, factors such as the effect of ballast age on tamping efficiency were 
evaluated. However, no clear effect of ballast age was noted contrary to the findings by 
Caetano and Teixeira (2015) and Audley and Andrews (2013). Soleimanmeigouni et al. 
(2017) proposed two-level piece- wise linear model to characterize the recovery and 
deterioration of track geometry with possible spatial dependencies within deterioration 
parameters captured using autoregressive moving average models. Multivariate linear 
regression was employed to tie various explanatory variables with response variables such 
as recovery values and changes in the deterioration rates after tamping. Tamping recovery 
was dependent on both track condition before tamping and tamping type (partial or 
complete) with the inter- action effect between the two covariates also considered. 
 
Linear regression models are highly popular due to their simplicity. However, they assume 
linear dependency and assume normality of the random variables and joint distribution. 
Non-normality transpires in various forms: non-normality of marginal distribution of some 
variables and in some instances multivariate non-normality of the joint distribution of a 
group of variables despite normal marginal distributions of all the individual variables (Yan 
2006, Attoh-Okine 2013). Furthermore, in most cases there exists a high degree of 
uncertainty in recovery values even in instances where track quality is identical prior to 
tamping, which cannot be accounted for using deterministic techniques. For this reason, 
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probabilistic techniques have increasingly been employed to cater for this variation by 
assuming the recovery after tamping is a random variable with a given probability 
distribution. A unique distribution for the recovery values after tamping is selected given 
a group of influencing variables with the parameters (or measures) of the distribution 
assumed to be a function of the inputs (Soleimanmeigouni et al. 2016b). 
 
Quiroga and Schnieder (2012) developed a simulation approach for modeling the recovery 
and degradation of track geometry. The stochastic model statistically characterizes the 
phenomena given the historical data and employs Monte Carlo method to attain simulated 
process realizations. The tamping recovery was assumed to be dependent on the number 
of accumulated tamping interventions. The track quality (longitudinal mean deviation) 
after tamping was assumed to be log-normally distributed stochastic variable dependent on 
the number of accumulated tamping interventions. It was observed that the variance of the 
track quality (longitudinal mean deviation) after tamping increased with greater number of 
accumulated tamping interventions. It was also observed that the deterioration rate (quality 
loss rate) increased considerably after each tamping intervention.  Quiroga et al. (2012) 
combined the Monte Carlo simulation approach developed by Quiroga and Schnieder 
(2012) and a heuristic algorithm for maintenance intervention planning to evaluate the 
optimization of two maintenance strategies namely adaptive (dynamic) and constant 
intervention thresholds. 
 
Audley and Andrews (2013) evaluated the effect of tamping on the degradation of track 
geometry condition taking into consideration two probability distributions, which 
characterize the track quality for periods between tamping. Firstly, the authors analyzed 
the distributions of times for the track geometry to degrade to specified states or levels of 
performance following tamping given the line speed and the maintenance history. The two-
parameter Weibull distribution was found to best model the times to degradation despite 
the better fit of its three-parameter counterpart since the extra parameter (location 
parameter or failure-free parameter) pro- vided a better fit but no physical reason to justify 
a nonzero location parameter. Results of the analysis corroborated the theory that tamping   
damages the ballast and results in faster deterioration of the track geometry, which was 
evident by the reduction of the characteristic life parameter with the frequency of tamping 
interventions. Additionally, it was observed that the more the track geometry degrades, the 
greater the rate of degradation, which was evident by the increase in the shape parameter 
with the measurement of track quality (SD of the vertical alignment). Secondly, the authors 
analyzed the quality of track geometry after intervention.  Despite the three-parameter log-
normal distribution having the best-fit, two-parameter log-normal distribution with a 
slightly lower fit was selected due to its ease of use to model the recovery values after 
tamping (probability of achieving the track quality condition after tamping) given the 
operational speeds and maintenance history. Tamping efficiency was found to decrease 
with increasing number of accumulated tamping interventions, which provides further 
proof that tamping damages ballast. Tamping efficiency was also found to reduce with 
increase in the operational speed. 
 
Soleimanmeigouni et al. (2016) evaluated the effect of tamping on several (different) track 
geometric parameters such as surface (longitudinal) level, alignment, and cross level (cant) 
analyzing both the tamping recovery as well as the change in the deterioration rate after 
tamping (due to tamping). A probabilistic model was used to model tamping recovery of 
the geometric parameters, which was assumed to be dependent on the track geometry 
condition prior to tamping. The deterioration of track geometry was modeled using linear 
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regression and Wiener process. The recovery values of the cross level (cant) and alignment 
were assumed to follow a three-parameter log- normal distribution while the recovery 
values of the surface profile were assumed to follow a three- parameter Weibull 
distribution. Tamping was found to have a negative effect (impact) on the deterioration rate 
with the increase in the degradation rate evident by the observed increase in the regression 
slope and drift coefficient of the Wiener process.  Complete and partial tamping 
interventions were also clustered and examined separately since they have different effects 
on the track geometry condition. Complete tamping interventions were found to have a 
considerably greater effect on the track geometry condition compared to partial tamping. 
Additionally, a linear correlation analysis conducted showed a moderate dependence 
(correlation) between the recovery of sur- face (longitudinal) level and that of the cross 
level (cant) and a weak dependence (correlation) between the surface (longitudinal) level 
and that of the alignment. However, Pearson’s correlation coefficient assumes linear 
dependence between the random variables and assumes normality of these random 
variables and their joint distribution. Thus, it will be more appropriate to employ concordance 
measures which are suitable for measuring both linear and non- linear dependence. These 
measures are scale-invariant and measure dependence irrespective of the assumed 
distributions. 
 
In summary, the vast majority of tamping recovery models do not take into consideration 
the underlying dependence between the variables of interest, which may exhibit tail 
dependency, asymmetric dependence, and other non-linear dependencies. However, 
copula-based approaches take into account these nonlinearities by allowing for the separate 
modeling of the arbitrary univariate marginal distributions and the dependence structure, 
which are subsequently combined to form a joint distribution with the underlying 
dependence. 
 
COPULAS 
 
General 
Copulas are functions that combine or link multivariate distribution functions to their 
univariate marginal distribution functions and are thus more flexible than standard 
elliptical distributions. An n-dimensional copula   is   a    multivariate    distribution    
function C(u1, . . .  , un ) defined on the unit hypercube [0, 1]n, with n-random variables as 
uniformly distributed marginal (Nelsen 2006, Czado et al. 2012, and Zilko et al. 2016). 
The copula function assigns a non- negative number to each hyper-rectangle in the unit 
hypercube. C is a bivariate copula if C: [0, 1]2 → [0, 1] and meets the following conditions: 
 

 
 
The copula approach via Sklar’s theorem (Sklar 1959) permits the separation of the 
multivariate distribution into univariate margins, and the dependence structure, which is 
modeled via the copula function without loss of information (Dalla et al. 2016). Sklar’s 
theorem offers the link between univariate marginals and copula to the multi- variate joint 
distribution. Sklar’s theorem states that for any n-dimensional distribution function with 
given marginals F1, . . .  , Fn, there exists an  n-dimensional copula C :[0, 1]n→[0, 1] 
such that for all (x1, ... , xn) ϵ Rn 

n 
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F(x1, . . . , xn) = C{F 1(x1), . . . , F n(xn)} (1) 
 
holds. C is unique if each Fi (x) is continuous; otherwise it is uniquely determined by the 
product of their ranges (Range of F 1 ×… × Range of Fn) 
 
Sklar’s theorem offers a useful means of constructing copulas given the marginals F1, ..., 
Fn such that 
 
C(x1, . . . , xn) = F(F -1(x1), . . . , F -1(xn))

 
(2) 

 
If F is absolute continuous, the copula density c is well defined and can be written as 
 
𝑐𝑐(𝑢𝑢1, …𝑢𝑢𝑛𝑛) = 𝜕𝜕𝑛𝑛𝐶𝐶(𝑢𝑢1,…𝑢𝑢𝑛𝑛)

𝜕𝜕𝑢𝑢1,…𝜕𝜕𝑢𝑢𝑛𝑛
 (3) 

 
The density f of the multivariate distribution F given the copula density c can be expressed as 
 
𝑓𝑓(𝑥𝑥1, … 𝑥𝑥𝑛𝑛) = 𝑐𝑐{𝐹𝐹1(𝑥𝑥1), … ,𝐹𝐹𝑛𝑛(𝑥𝑥𝑛𝑛)}∏ 𝑓𝑓𝑖𝑖𝑛𝑛

𝑖𝑖=1 (𝑥𝑥𝑖𝑖) (4) 
 
There are two popular classes of copulas namely elliptical copulas and Archimedean 
copulas with a third less common class called extreme-value copulas (Yan 2006). 
 
Elliptical copulas 
 
Elliptical copulas are copulas of elliptical distributions. The two most common elliptical 
copulas are the normal or Gaussian copula and the Student’s t copula, which are related to 
the multivariate normal and multivariate Student’s t distributions, respectively. Both of 
these copulas are tail-symmetric; however, Student’s t copula has tail dependence, whereas 
Gaussian copula has no tail dependence. Properties of bivariate elliptical copula families 
including parameter range, Kendall’s tau, and tail dependence is given in Table 1. Elliptical 
copulas are directly obtained by the inversion of Sklar’s theorem and thus can be expressed 
in the form 
 

 (5) 
 
Archimedean copulas 
 
Archimedean copulas are constructed by means of a complete monotonic function without 
the need for distribution functions or random variables (Yan 2006). Common one-
parameter Archimedean copulas include Clayton, Gumbel, Frank, and Joe copulas. 
Common two-para- meter Archimedean copula families include Clayton– Gumbel (BB1), 
Joe–Gumbel (BB6), Joe–Clayton (BB7), and Joe–Frank (BB8), which are more flexible. 
Archimedean copulas can be expressed as 
 

 (6) 
 
where the generator of the copula, φ:[0,1]→[0,∞] is a continuous strictly decreasing 
convex function such that φ(0)=∞ and φ(1)=0 and φ-1is its pseudo-inverse which is given 
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- 

as  

 (7) 
The properties of various one-parametric and two- parametric bivariate Archimedean 
copulas are given in Table 2. 
 
Since copulas are invariant under monotone trans- formations, scale-invariant 
measures of dependence such as Kendall’s tau and Spearman’s rho are more suitable 
for evaluating the degree of dependence. They are both rank correlations and remain 
unaltered under strictly increasing transformations and evaluate a form of dependence 
known as concordance, which is the agreement or consistency of two or more sets of 
rankings (Yan 2006, Nelson 2006). 
 
Nonlinear dependence is usually evaluated using Kendall’s tau (Czado et al. 2012). 
Kendall’s tau measures dependence independent of the assumed distribution and thus is 
suitable when linking various (non-Gaussian) copula families (Dissmann et al. 2013). For 
Archimedean copulas, the closed-form expression of Kendall’s tau is based on the copula- 
specific generator function, whereas their computation for elliptical copulas are more 
complicated (Schepsmeier and Czado 2016).  The Kendall’s tau for various bivariate 
elliptical copulas and bivariate Archimedean copulas are shown in Tables 1 and 2, 
respectively. 
 
Other concordance measures include Gini’s measure of association, Blomqvist’s measure 
of association (or medial correlation coefficient), and Moran’s coefficient (Nelsen 2006 
and Dorey and Joubert 2005). There are several advantages of using rank correlations over 
ordinary product moment correlations such as Pearson’s correlation coefficient, which 
assumes linear dependency and normality of the random variables. These advantages 
include: they always exist, they are independent of marginal distributions meaning they 
can take any value in the [1, -1] interval, and they are invariant under mono- tonic 
increasing transformations of the marginal (Bedford T and Cooke 2001). 
 
As a result of the aforementioned limitations of Pearson’s correlation coefficient, 
concordance dependence measures such as Kendall’s tau and Spearman’s rho were 
employed as the measures of dependency in this case study. Kendall’s tau was used in 
evaluating the dependency between the track condition before tamping and tamping 
recovery values. Furthermore, Kendall’s tau and Spearman’s rho were used in measuring 
the dependence between the recovery values of the various geometric parameters. These 
scale-invariant measures were subsequently compared with the Pearson’s correlation 
coefficient. 
 

Table 1. Properties of the Bivariate Elliptical Copula Families (Brechmann and 
Schepsmeier 2013). 
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Table 2. Properties of the Archimedean Bivariate Copula Families (Brechmann and Schepsmeier 2013). 
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All the aforementioned correlation coefficients measure the average dependence over the 
domain of the variables of interest. Tail dependence is the measure that tries to capture the 
dependence more locally rather than globally, in the tails (lower and/or upper) of 
distribution (Lewandowski 2008). It can be defined as the measure of the co-movements 
in the tails of the distributions of random variables. Let Y=(Y1, Y2 ) be a pair of random 
variables. The pair is said to be upper tail dependent if 
 

 (8) 
 
if the limit λU exists. This is the probability that Y1 reaches extremely large values, 
given that Y2 attains extremely large values. Similarly, the pair is said to be lower tail 
dependent if 
 

 (9) 
 
if the limit λL exists. The lower and upper tail dependence coefficients of various elliptical 
and Archimedean copula families can be found in Tables 1 and 2, respectively. If the lower 
and upper tail coefficients differ, the dependence can be said to be asymmetric. 
Asymmetric dependence is the dependence that is not identical on both sides of a central 
line or line of symmetry over the domain of the variables of interest.  On the other hand, 
symmetric dependence is the dependence that is identical on both sides of a central line or 
line of symmetry. 
 
TRACK INFORMATION AND DATA COLLECTION 
 
One mile of track of a Class 1 U.S. railroad was used for the analysis. Inspection data were 
measured and collected for every 1 foot of track using a track geometry car. The track 
geometry car records several geo- metric parameters. However, the surface, alignment, 
cross level, gage, and warp were used for the analysis. The inspection data used in this 
case study span the years 2014 to 2016 and were generally collected on a monthly basis. 
Thus, the time period between inspection data before and after tamping interventions was 
about a month apart. 
 
The inspection data were initially cleaned and pre- processed. Preprocessing of the data 
included signal realignment and application of a moving average filter to remove random 
noise or high frequency content in the signals. The SD of each of the track geometric 
parameters was subsequently computed for track segments with 100 feet of length. The 
tamping recovery values for each parameter were obtained by computing the difference 
between the SD of the track geometric parameters before tamping and the corresponding 
standard deviation after tamping. 
 
 
ANALYSIS 
 
Marginal fitting 
 
In order to select the best-fit for the marginal distributions for the recovery values after 
tamping, track quality before tamping and track quality after tamping; the Kolmogorov–
Smirnov (KS), Anderson–Darling, and Chi-squared tests were chosen as the goodness-of-
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fit criteria. These test statistics evaluate how well the data (stochastic variable) follow a 
specific (an a priori) distribution. The smaller the statistic, the better the distribution fits the 
given data. In order to select the best distribution, the statistic should be considerably lower 
than the others, else additional criteria such as probability plots need to be employed.  The 
null hypothesis states that the data followed a specified distribution with the alternative 
hypothesis stating that the data do not follow a specified distribution. The null hypothesis 
is rejected if the p-value is lower than a significance level of 5%. 
 
The KS test is a nonparametric statistical test of the equality of two probability distributions 
namely the empirical distribution of the data and a reference probability distribution. The 
Anderson–Darling test offers more weighting to the tails compared to the KS test. 
 
Copula fitting 
 
The underlying dependence between track quality before tamping and recovery values as 
well as the dependence of the track quality before tamping and track quality after tamping 
was characterized using copulas. In order to select the best-fit of bivariate copula that 
describes the underlying dependence, the Akaike information criterion (AIC) (Akaike 
1974) and Bayesian information (BIC) (Schwarz 1978) were used. AIC corrects the log-
likelihood of a copula for the number of parameters. AIC is often favored for bivariate 
copula selection ahead of other alternative criteria such as Vuong (1989) and Clarke (2007) 
goodness-of-fit tests and BIC. This is as a result of its high performance in simulation 
analysis and its greater reliability (Dalla et al. 2014, Dissmann et al. 2013). 
 
Prior to selection of the bivariate copula, the Genest and Favre bivariate asymptotic 
independence test based on Kendall’s tau is performed to determine the independence of 
the pair of variables. The null hypothesis states that the variables are independent and the 
alternative hypothesis states that the variables are not independent. The independence 
copula is selected for the pair of variables if the p-value of the test is higher than 5% 
meaning the null hypothesis is accepted. 
 
The pair-copula families considered during the analysis were the independence copula, 
elliptical bivariate Gaussian (Normal), and Student’s t copulas as well as the single 
parameter Archimedean copulas such as bivariate Clayton, Gumbel, Frank, and Joe copulas. 
Others include the two-parameter Archimedean copulas such as Clayton–Gumbel (BB1), Joe–
Gumbel (BB6), Joe–Clayton (BB7), and Joe–Frank (BB8) copulas. The Clayton–Gumbel (BB1) 
and Joe–Clayton (BB7) permit different nonzero lower and upper tail dependence coefficients. 
 
Rotated versions (90° and 270°) of these Archimedean copulas can be used to fit negative 
dependences (with the exception of Frank copula that has no rotated version). However, 
no negative dependences were observed during exploratory analysis so these rotations 
were not considered during further analysis. This catalog for the implementation of copula 
family choice addresses a vast range of dependence behavior. Properties of these copulas 
are found in Table 3. 
 
RESULTS 
 
The marginal and copula fitting results for each track geometry indicator namely surface, 
alignment, cross level, warp, and gage are reported in this section. 
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Surface (longitudinal level) 
 
Marginal fitting. The three-parameter log-normal distribution was found to have the best-
fit of the recovery values of the SD surface producing the lowest statistic for all three tests 
namely the Kolomogorov–Smirnov, Anderson–Darling, and Chi-squared tests as shown 
in Table 4. It also had a p-value far greater than 0.05 for KS and Chi-squared tests meaning 
the null hypothesis that it follows the distribution can be accepted.  The closed-form 
expression for the p-value of the three-parameter log-normal distribution, however, does 
not exist for the Anderson–Darling test. Audley and Andrews (2013) found the three-
parameter log-normal distribution to have the best-fit of recovery values of the SD surface 
profile but employed its two-parameter counterpart due to its ease of use. The two-
parameter log-normal distribution has been used to model the recovery values of the 
surface profile (longitudinal level) by several researchers (Quiroga and Schnieder 2012, 
Audley and Andrews 2013, Quiroga et al. 2012). However, in this case study, the three-
parameter log-normal distribution was used to model the recovery value of the surface 
profile based on the aforementioned results. 
 

Table 3. Properties of the Pair-Copula Families Considered. 
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Table 4. Results for the Fitted Distribution to Recovery Values for SD Surface. 

 
 
 

Table 5. Results for the Fitted Distribution to Values before Tamping for SD Surface. 

 
 
Similarly, the three-parameter log-normal distribution was also found to have the best-fit 
for both the SD surface values before tamping and SD surface values after tamping as 
shown in Tables 5 and 6, respectively. 
 
Copula fitting. The Gumbel copula was found to pro- vide the best-fit of the underlying 
dependence between the   SD   surface   values   before   tamping   and   the recovery 
values. The Gumbel copula produced both the lowest AIC and BIC values as shown in 
Table 7.  
 
The selection of the Gumbel copula suggests an asymmetric dependence (specifically an 
upper tail dependence) between the track quality (standard deviation surface) before 
tamping and the recovery value. Upper tail dependence means that the pair is highly 
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correlated at high values (upper tail of the distributions) but lowly correlated at lower 
values. 
 
Simulated values were generated given the three- parameter log-normal marginals (for 
both track quality before tamping and recovery value) and Gumbel copula. An illustrative 
comparison between the real and simulated values for recovery values against track 
condition before tamping for SD surface is shown in Figure 1. 
 
The Joe–Clayton (popularly known as BB7) copula was found to offer best-fit of the 
underlying dependence between the track quality (SD surface) before tamping and the 
track quality after tamping.  The BB7 copula was found to produce the lowest AIC and 
BIC values as shown in Table 8. 
 

Table 6. Results for the Fitted Distribution to Values after Tamping for SD Surface. 

 
 

Table 7. Results for the Fitted Bivariate Copula between Values before Tamping and 
Recovery Values for SD Surface. 

 



 
 

16 
 

 

 
Figure 1. Comparison between real and simulated values for SD surface given the three-

parameter log-normal marginals (before tamping and recovery values) and Gumbel 
copula. 

 
 

Table 8. Results for the Fitted Bivariate Copula between Values before and after 
Tamping for SD Surface. 
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Figure 2. Comparison between real and simulated values for SD surface given the three-
parameter log-normal marginals (before tamping and after tamping) and Joe–Clayton 

(BB7) copula. 

 
The Joe–Clayton copula consists of the Joe copula and Clayton copula, which are suitable 
for modeling upper tail and lower tail dependence, respectively. The selection of the BB7 
copula suggests an asymmetric dependence (with different nonzero lower and upper tail 
dependence coefficients) between the SD surface values before tamping and SD surface 
values after tamping. Similarly, simulated values were generated given the three-parameter 
log-normal marginals (for both track quality before tamping and track quality after 
tamping) and Joe–Clayton (BB7) copula. An illustrative comparison between the real and 
simulated values for track condition after tamping against track condition before tamping 
for SD surface is shown in Figure 2. 
 
Alignment 
 
Marginal fitting. Similar to the surface profile results, the three-parameter log-normal 
distribution was found to have the best-fit for the recovery values of SD alignment after 
tamping. The three-parameter log-normal distribution has previously been used to model 
the recovery values of SD alignment by Soleimanmeigouni et al. (2016b). The three-
parameter log-normal distribution was also found to have the best-fit of track quality (SD 
alignment) values before tamping and after tamping. 
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Figure 3. Comparison between real and simulated values for SD alignment given the three-
parameter log-normal marginals (before tamping and recovery values) and Joe copula. 

 
Copula fitting. The Joe copula provided the best-fit of the underlying dependence between 
the SD alignment values before tamping and the tamping recovery values producing both 
the lowest AIC and BIC values. The selection of the Joe copula suggests an upper tail 
dependence between the SD alignment values before tamping and tamping recovery 
values. The Joe copula has an even stronger positive upper tail dependence in comparison 
to the Gumbel copula and can be observed by tighter clustering of observations in the upper 
tail.39 Simulated values were generated given the three-parameter log-normal margins (for 
SD alignment values before tamping and recovery values) and Joe copula. Figure 3 shows 
the comparison between the observed and simulated values for recovery values against SD 
alignment before tamping. 
 
The Gaussian (or Normal) copula offered the best- fit of the underlying dependence 
between the SD alignment values before tamping and SD alignment values after tamping. 
The selection of the Gaussian copula suggests that the underlying dependence between the 
pair is radially symmetric with strong central dependence and very weak tail dependency. 
Similarly, simulated values were produced given the three-parameter log-normal marginals 
(for both SD alignment before tamping and SD alignment after tamping) and Gaussian 
copula. An illustrative comparison between the real and simulated values for track 
condition after tamping against track condition before tamping for SD alignment is shown 
in Figure 4. 
 
Cross level 
 
Marginal fitting. The three-parameter log-logistic distribution was found to best fit the 
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recovery values of SD cross level. The three-parameter log-logistic distribution has an 
identical shape to the three-parameter log- normal distribution (which was found to be the 
next best distribution) but has heavier tails. The three- parameter log-normal distribution 
was also found to have the best-fit of track quality (SD cross level) values before tamping 
and after tamping. 
 
Copula fitting. The bivariate asymptotic independence test performed prior to copula fitting 
and selection determined that the recovery values of the cross level and the track quality 
(SD cross level) before tamping were independent. The p-value of 0.43 was found to be 
higher than the 0.05 significance level. Thus, the null hypothesis that the variables are 
independent was accepted and the independence copula was selected for the pair of 
variables. Ignoring the test would have led to the selection of the Joe copula of parameter 
value of 1.38 and Kendall’s tau of 0.18. Simulated values were generated given the three-
parameter log-normal marginal (before tamping), three-parameter log-logistic marginal 
(recovery values), and independence copula. The simulated values are illustrated in Figure 
5. 

 
 

Figure 4. Comparison between real and simulated values for SD alignment given the three-
parameter log-normal marginals (before tamping and after tamping) and Gaussian 

(normal) copula. 
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Figure 5. Comparison between real and simulated values for SD cross level given the three-
parameter log-normal marginal (before tamping), three-parameter log-logistic marginal 

(recovery values), and independent copula. 

Warp 
 
Marginal fitting. Similar to the cross-level results, the three-parameter log-logistic 
distribution was found to have the best-fit for the tamping recovery values of SD warp. 
Furthermore, the three-parameter log- normal distribution was also found to have the best-  
fit of track quality (SD warp) values before tamping and after tamping. 
 
Copula fitting. The Joe copula provided the best-fit of the underlying dependence between 
the SD warp values before tamping and the tamping recovery values. The Joe copula 
produced both the lowest AIC and BIC values. Simulated values were generated given the 
three-parameter log-normal marginal (before tamping), three-parameter log-logistic 
marginal (recovery values), and Joe copula. The simulated values are illustrated in Figure 
6. 
 
Gage 
 
Marginal fitting. The three-parameter log-logistic distribution was found to have the best-
fit for the tamping recovery values of SD gage. The three-parameter log- logistic 
distribution offered the lowest statistic for all three tests. It also had a p-value far greater 
than 0.05 for the KS and Chi-squared tests meaning the null hypothesis that it follows the 
distribution can be accepted. The closed-form expression for the p-value of the three-
parameter log-logistic distribution, how- ever, does not exist for the Anderson–Darling 
test.  The two-parameter log-normal distribution and the three-parameter log-logistic 
distribution were found to provide the best fit for both SD gage values before tamping and 
SD gage values after tamping, respectively. 
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Figure 6. Comparison between real and simulated values for SD warp given the three-
parameter log-normal marginal (before tamping), three-parameter log-logistic marginal 

(recovery values), and Joe copula. 

 
Copula fitting. The Joe–Frank (BB8) copula was found to offer the best-fit of the underlying 
dependence between the SD gage values before tamping and tamping recovery values 
producing both the lowest AIC and BIC values. The BB8 copula consists of the Joe copula 
and Frank copula. The Joe copula is suitable for strong upper tail dependence, whereas 
Frank copula is suitable for very strong central dependence with very weak tail 
dependence. The Frank copula has stronger central dependence than the Gaussian copula 
(denoted by significant central clustering) and even weaker tail dependence than the 
Gaussian copula (denoted by fanning out at the tails) (Bhat and Eluru 2009). Simulated 
values were generated given the two-parameter log-normal (values before tamping), three-
parameter log-logistic distribution (recovery values), and Joe–Frank (BB8) copula. The 
comparison of the observed and simulated values is shown in Figure 7. 
 
Correlation analysis of recovery values of geometric parameters 
 
Correlation analysis was conducted to measure the dependence between the tamping 
recoveries of the various track geometric parameters namely surface profile, alignment, 
cross level, warp, and gage. The correlation measures employed include Pearson’s 
correlation coefficient and concordance (or rank correlation) measures such as Kendall’s 
tau and Spearman’s rho. Pearson’s correlation coefficient measures the linear dependence 
between random variables and assumes that the variables of interest are normal. Thus, the 
widely used Pearson’s coefficient is not suitable for evaluating the nonlinear dependence 
or dependence between non- normal distributions. 
 
The results of the linear correlation analysis are shown in Table 9. The highest dependence 
was found between the recoveries of SD warp and SD cross level.  The fact that warp is a 
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measure of the cross-level variation offers some support to the high dependence observed. 
On the other hand, the lowest dependence was observed between the recovery values of SD 
gage and SD surface. Gage is a trans- verse horizontal parameter, whereas surface is a 
vertical longitudinal parameter. In fact, generally gage was found to have relatively weak 
dependences between the other parameters with its highest 
 

 
 

Figure 7. Comparison between real and simulated values for SD gage given the two-parameter 
lognormal marginal (before tamping), three-parameter log-logistic marginal (recovery 

value), and Joe–Frank (BB8) copula. 

 
Table 9. Pearson’s Correlation Matrix of Recovery Values of the Geometric Parameters. 
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Table 10. Kendall’s tau Correlation Matrix of Recovery Values of the Geometric 
Parameters. 

 
 
dependence observed with alignment, which is a horizontal longitudinal parameter unlike 
the others. The surface profile was found to have moderate dependence with both cross 
level and warp, which are also vertical parameters. Alignment was found to have moderate 
correlations with vertical parameters such as surface, cross level, and warp parameters.  Of 
these three parameters, surface profile was the parameter with the highest dependence with 
alignment, which suggests that tamping affects the surface profile in more similar way to 
alignment in comparison with the others. Surface and alignment are both longitudinal 
parameters. 
 
However, a comparison of the results of linear correlation with the results of concordance 
dependence shows a general reduction in the observed dependence between the recoveries 
of the various parameters. These are shown in the results of concordance dependence such 
as the Kendall’s tau and Spearman’s rho correlation matrices in Tables 10 and 11, 
respectively. For instance, the linear dependence of 0.80 was found to reduce to 0.35 
and 0.47 by employing the Kendall’s tau and Spearman’s rho dependence measures, 
which do not assume linear dependence or assume normality of the random variables. 
As a matter of fact, the recoveries of warp and cross level and warp were found to 
assume three-parameter log-normal distribution and three-parameter log-logistic 
distribution. Furthermore, the normal distribution was found to not fit the data as 
shown in the aforementioned tables. Additionally, an examination of the under- lying 
dependence suggests a Student’s t copula. Thus, it may be quite misleading to employ 
linear correlation coefficient not only in modeling the tamping recovery of various 
parameters but also in analyzing the dependences of the various recoveries of these 
parameters. 
 
Table 11. Spearman’s rho Correlation Matrix of Recovery Values of the Geometric 
Parameters. 
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CONCLUDING REMARKS 
 
The effect of tamping on various parameters namely surface, alignment, cross level, warp, 
and gage were evaluated by analyzing the recovery of these geometric parameters after 
tamping. Tamping recovery has been found to be predominantly dependent on the track 
geometry condition before tamping. It has largely been modeled using deterministic 
techniques such as linear regression, which assumes multivariate normal distribution and 
linear relationship between the variables. However, non-normality in most cases transpires 
in various forms: non-normality of marginal distribution of some variables and in some 
instances multivariate non-normality of the joint distribution of a group of variables despite 
normal marginal distributions of all the individual variables. Furthermore, deterministic 
techniques are not suitable given the high degrees of uncertainty that happens to be 
observed in the recovery values of track geometry measures in majority of cases. Thus, 
probabilistic techniques are increasingly being employed that take into consideration the 
high variation in the restoration values after tamping even for similar track geometry 
condition. Majority of studies do not take into consideration the underlying dependence 
between the variables of interest. Thus, the authors employ a copula-based approach to 
model the tamping recovery phenomenon by combining arbitrary marginal distributions to 
form a joint distribution with the underlying dependence. 
 
From marginal fitting results, the recoveries of the various parameters were found to be 
non-normal and were found to either fit a three-parameter log-normal distribution (in the 
case of surface, alignment, and warp) or three-parameter log-logistic distribution (in the 
case of cross level and gage). Similarly, non- normal distributions were observed for the 
track quality condition (SD of track geometric parameters) before and after tamping. 
Various copulas were fitted in order to find the copula, which best describe the underlying 
dependence between the variables.  The selection of copulas such as Gumbel, Joe, and Joe–
Clayton copulas (BB7) suggest the presence of asymmetric and tail dependence, which 
cannot be appropriately captured using the widely used linear regression. Thus, 
conventional correlation analysis appears not to be suitable for analyzing the dependences 
between the recovery values and tamping condition before tamping. 
 
Correlation analysis of the recovery of various geometric parameters shows that the use of 
Pearson’s correlation coefficient, which assumes normality of the variables and linear 
dependence, led to the observation of relatively high dependence values. However, the use 
of concordance measures such as Kendall’s tau and Spearman’s rho resulted in a general 
reduction in the observed dependences. These concordance measures are scale-invariant 
and are suitable for evaluating nonlinear dependence and measure dependence irrespective 
of the assumed distribution. Thus, the widely used Pearson’s correlation coefficient does 
not appear to be appropriate for analyzing the correlation between the recoveries of the 
various track geometric parameters. From the correlation analysis results, the strongest 
correlation was observed between warp and cross-level recoveries with the weakest 
correlation observed between the surface and gage recoveries with varying levels in-
between. This infers and gives credence to the previous research that tamping affects the 
various track geometric parameters differently and, thus, it is imperative to examine all the 
track geometric parameters and not focus on one or two parameters. 
 
The copula-based approach was employed by considering only the predominant factor, 
which is the track geometry condition or quality before tamping. However, this 
methodology can be extended to incorporate and examine other factors such as operational 
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speed, tamping procedure, age of track components, and number of previous tamping 
operations. In order to analyze the dependences between more than two variables, vine 
copulas are suggested, which are more flexible than regular multivariate copulas. Vine 
copulas employ arbitrary bivariate copulas as building blocks for the construction of higher 
dimensional multivariate distributions. 
 
The copula-based tamping recovery model can be incorporated into track geometry 
maintenance scheduling models with the track geometry degradation models and 
recovery models being the main components of these models. Degradation models that 
can be considered include linear and exponential regression models, polynomial models, 
multi-stage linear models, neural networks, grey models, path analysis, data mining, 
models with random coefficient, Markov models, time series models, and stochastic 
processes. There is the need to select an appropriate track geometry deterioration model 
that takes into consideration both the time and spatial variation of the track geometry 
degradation process.9 The combination of such a model with a copula-based approach 
that models the tamping recovery phenomena considering the underlying dependence 
will lead to better track geometry condition estimation for the planning of maintenance 
activity. The combination of such models will also result in a greater comprehension of 
track geometry maintenance modeling. This proposed methodology will be considered 
in a future case study. In order to integrate such degradation models and copula-based 
recovery models in track scheduling models, probabilistic optimization models need to 
be considered. 
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